
14 Parallel Information Retrieval

Information retrieval systems often have to deal with very large amounts of data. They must be

able to process many gigabytes or even terabytes of text, and to build and maintain an index

for millions of documents. To some extent the techniques discussed in Chapters 5–8 can help us

satisfy these requirements, but it is clear that, at some point, sophisticated data structures and

clever optimizations alone are not sufficient anymore. A single computer simply does not have

the computational power or the storage capabilities required for indexing even a small fraction

of the World Wide Web.1

In this chapter we examine various ways of making information retrieval systems scale to very

large text collections such as the Web. The first part (Section 14.1) is concerned with parallel

query processing, where the search engine’s service rate is increased by having multiple index

servers process incoming queries in parallel. It also discusses redundancy and fault tolerance

issues in distributed search engines. In the second second part (Section 14.2), we shift our

attention to the parallel execution of off-line tasks, such as index construction and statistical

analysis of a corpus of text. We explain the basics of MapReduce, a framework designed for

massively parallel computations carried out on large amounts of data.

14.1 Parallel Query Processing

There are many ways in which parallelism can help a search engine process queries faster. The

two most popular approaches are index partitioning and replication. Suppose we have a total

of n index servers. Following the standard terminology, we refer to these servers as nodes. By

creating n replicas of the index and assigning each replica to a separate node, we can realize an

n-fold increase of the search engine’s service rate (its theoretical throughput) without affecting

the time required to process a single query. This type of parallelism is referred to as inter-query

parallelism, because multiple queries can be processed in parallel but each individual query

is processed sequentially. Alternatively, we could split the index into n parts and have each

node work only on its own small part of the index. This approach is referred to as intra-query

1 While nobody knows the exact size of the indexable part of the Web, it is estimated to be at least 100
billion pages. In August 2005, when Yahoo! last disclosed the size of its index, it had reached a total
size of 19.2 billion documents (http://www.ysearchblog.com/archives/000172.html).
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Figure 14.1 The two prevalent index partitioning schemes: document partitioning and term parti-
tioning (shown for a hypothetical index containing 8 terms and 9 documents).

parallelism, because each query is processed by multiple servers in parallel. It improves the

engine’s service rate as well as the average time per query.

In this section we focus primarily on methods for intra-query parallelism. We study index par-

titioning schemes that divide the index into independent parts so that each node is responsible

for a small piece of the overall index.

The two predominant index partitioning schemes are document partitioning and term parti-

tioning (visualized in Figure 14.1). In a document-partitioned index, each node holds an index

for a subset of the documents in the collection. For instance, the index maintained by node 2

in Figure 14.1(a) contains the following docid lists:

L1 = 〈4, 6〉, L2 = 〈5〉, L4 = 〈4〉, L5 = 〈6〉, L7 = 〈4, 6〉.

In a term-partitioned index, each node is responsible for a subset of the terms in the collection.

The index stored in node 1 in Figure 14.1(b) contains the following lists:

L1 = 〈1, 3, 4, 6, 9〉, L2 = 〈2, 5〉, L3 = 〈2, 3, 8〉.

The two partitioning strategies differ greatly in the way queries are processed by the system. In

a document-partitioned search engine, each of the n nodes is involved in processing all queries

received by the engine. In a term-partitioned configuration, a query is seen by a given node only

if the node’s index contains at least one of the query terms.



Information Retrieval: Implementing and Evaluating Search Engines · c©MIT Press, 2010 · DRAFT494

14.1.1 Document Partitioning

In a document-partitioned index, each index server is responsible for a subset of the documents

in the collection. Each incoming user query is received by a frontend server, the receptionist,

which forwards it to all n index nodes, waits for them to process the query, merges the search

results received from the index nodes, and sends the final list of results to the user. A schematic

of a document-partitioned search engine is shown in Figure 14.2.

The main advantage of the document-partitioned approach is its simplicity. Because all index

servers operate independently of each other, no additional complexity needs to be introduced

into the low-level query processing routines. All that needs to be provided is the receptionist

server that forwards the query to the backends and, after receiving the top k search results from

each of the n nodes, selects the top m, which are then returned to the user (where the value

of m is typically chosen by the user and k is chosen by the operator of the search engine). In

addition to forwarding queries and search results, the receptionist may also maintain a cache

that contains the results for recently/frequently issued queries.

If the search engine maintains a dynamic index that allows updates (e.g., document inser-

tions/deletions), then it may even be possible to carry out the updates in a distributed fashion,

in which each node takes care of the updates that pertain to its part of the overall index. This

approach eliminates the need for a complicated centralized index construction/maintenance pro-

cess that involves the whole index. However, it is applicable only if documents may be assumed

to be independent of each other, not if inter-document information, such as hyperlinks and

anchor text, is part of the index.

When deciding how to divide the collection across the n index nodes, one might be tempted to

bias the document-node assignment in some way — for instance, by storing similar documents

in the same node. In Section 6.3.7 we have seen that the index can be compressed better if

the documents in the collection are reordered according to their URL, so that documents with

similar URLs receive nearby docids. Obviously, this method is most effective if all pages from

the same domain are assigned to the same node. The problem with this approach is that it

may create an imbalance in the load distribution of the index servers. If a given node primarily

contains documents associated with a certain topic, and this topic suddenly becomes very

popular among users, then the query processing load for that node may become much higher

than the load of the other nodes. In the end this will lead to a suboptimal utilization of the

available resources. To avoid this problem, it is usually best to not try anything fancy but to

simply split the collection into n completely random subsets.

Once the index has been partitioned and each subindex has been loaded into one of the nodes,

we have to make a decision regarding the per-node result set size k. How should k be chosen

with respect to m, the number of search results requested by the user? Suppose the user has

asked for m = 100 results. If we want to be on the safe side, we can have each index node

return k = 100 results, thus making sure that all of the top 100 results overall are received by

the receptionist. However, this would be a poor decision, for two reasons:
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Figure 14.2 Document-partitioned query processing with one receptionist and several index servers. Each
incoming query is forwarded to all index servers.

1. It is quite unlikely that all of the top 100 results come from the same node. By having

each index server return 100 results to the receptionist, we put more load on the network

than necessary.

2. The choice of k has a non-negligible effect on query processing performance, because of

performance heuristics such as MaxScore (see Section 5.1.1). Table 5.1 on page 144

shows that decreasing the result set size from k = 100 to k = 10 can reduce the average

CPU time per query by around 15%, when running queries against a frequency index

for GOV2.

Clarke and Terra (2004) describe a method to compute the probability that the receptionist

sees at least the top m results overall, given the number n of index servers and the per-node

result set size k. Their approach is based on the assumption that each document was assigned

to a random index node when the collection was split into n subsets, and thus that each node

is equally likely to return the best, second-best, third-best, . . . result overall.

Consider the set Rm = {r1, r2, . . . , rm} composed of the top m search results. For each

document ri the probability that it is found by a particular node is 1/n. Hence, the probability

that exactly l of the top m results are found by that node is given by the binomial distribution

b(n, m, l) =

(

m

l

)

·

(

1

n

)l

·

(

1 −
1

n

)m−l

. (14.1)
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Figure 14.3 Choosing the minimum retrieval depth k that returns the top m results with probability
p(n, m, k) > 99.9%, where n is the number of nodes in the document-partitioned index.

The probability that all members of Rm are discovered by requesting the top k results from

each of the n index nodes can be calculated according to the following recursive formula:

p(n, m, k) =























1 if m ≤ k;

0 if m > k and n = 1;
k

∑

l=0

b(n, m, l) · p(n − 1, m − l, k) if m > k and n > 1.

(14.2)

The two base cases are obvious. In the recursive case, we consider the first node in the system

and compute the probability that l = 0, 1, 2, . . . , k of the top m results overall are retrieved

by that node (i.e., b(n, m, l)). For each possible value for l, this probability is multiplied by

the probability p(n − 1, m − l, k) that the remaining m − l documents in Rm are found by the

remaining n− 1 index nodes. Equation 14.2 does not appear to have a closed-form solution but

can be solved through the application of dynamic programming in time Θ(n · m · k).

Figure 14.3 shows the per-node retrieval depth k required to find the top m results with

probability at least 99.9%. For m = 100 and n = 4, a per-node retrieval depth of k = 41

achieves the desired probability level. If we decide to relax our correctness requirements from

99.9% to 95%, k can even be decreased a little further, from 41 to 35.

It can sometimes be beneficial to optimize the retrieval depth k for a different value m than

the user has asked for. For example, if the receptionist maintains a cache for recently issued

queries, it may be worthwhile to obtain the top 20 results for a given query even if the user has

asked for only the top 10, so that a click on the “next page” link can be processed from the

cache. Allowing the receptionist to inspect a result set Rm′ for m′ > m is also useful because
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it facilitates the application of diversity-seeking reranking techniques, such as Carbonell and

Goldstein’s (1998) maximal marginal relevance or Google’s host crowding heuristic.2

14.1.2 Term Partitioning

Although document partitioning is often the right choice and scales almost linearly with the

number of nodes, it can unfold its true potential only if the index data found in the individual

nodes are stored in main memory or any other low-latency random-access storage medium, such

as flash memory, but not if it is stored on disk.

Consider a document-partitioned search engine in which all postings lists are stored on disk.

Suppose each query contains 3 words on average, and we want the search engine to handle a

peak query load of 100 queries per second. Recall from Section 13.2.3 that, due to queueing

effects, we usually cannot sustain a utilization level above 50%, unless we are willing to accept

occasional latency jumps. Thus, a query load of 100 qps translates into a required service rate

of at least 200 qps or — equivalently — 600 random access operations per second (one for each

query term). Assuming an average disk seek latency of 10 ms, a single hard disk drive cannot

perform more than 100 random access operations per second, a factor of 6 less than what is

required to achieve the desired throughput. We could try to circumvent this limitation by adding

more disks to each index node, but equipping each server with six hard disks may not always

be practical. Moreover, it is obvious that we will never be able to handle loads of more than a

few hundred queries per second, regardless of how many nodes we add to the system.

Term partitioning addresses the disk seek problem by splitting the collection into sets of terms

instead of sets of documents. Each index node vi is responsible for a certain term set Ti and

is involved in processing a given query only if one or more query terms are members of Ti.

Our discussion of term-partitioned query processing is based upon the pipelined architecture

proposed by Moffat et al. (2007). In this architecture, queries are processed in a term-at-a-time

fashion (see Section 5.1.2 for details on term-at-a-time query processing strategies).

Suppose a query contains q terms t1, t2, . . . , tq. Then the receptionist will forward the query to

the node v(t1) responsible for the term t1. After creating a set of document score accumulators

from t1’s postings list, v(t1) forwards the query, along with the accumulator set, to the node

v(t2) responsible for t2, which updates the accumulator set, sends it to v(t3), and so forth.

When the last node in this pipeline, v(tq), is finished, it sends the final accumulator set to the

receptionist. The receptionist then selects the top m search results and returns them to the

user. A schematic of this approach is shown in Figure 14.4.

Many of the optimizations used for sequential term-at-a-time query processing also apply to

term-partitioned query processing: infrequent query terms should be processed first; accumula-

tor pruning strategies should be applied to keep the size of the accumulator set, and thus the

2 www.mattcutts.com/blog/subdomains-and-subdirectories/
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Figure 14.4 Term-partitioned query processing with one receptionist and four index servers. Each incoming
query is passed from index server to index server, depending on the terms found in the query (shown for a query
containing three terms).

overall network traffic, under control; impact ordering can be used to efficiently identify the

most important postings for a given term.

Note that the pipelined query processing architecture outlined above does not use intra-query

parallelism, as each query — at a given point in time — is processed by only a single node.

Therefore, although it can help increase the system’s theoretical throughput, term partitioning,

in the simple form described here, does not necessarily decrease the search engine’s response

time. To some extent this limitation can be addressed by having the receptionist send prefetch

instructions to the nodes v(t2), . . . , v(tq) at the same time it forwards the query to v(t1). This

way, when a node v(ti) receives the accumulator set, some of ti’s postings may already have

been loaded into memory and the query can be processed faster.

Despite its potential performance advantage over the document-partitioned approach, at least

for on-disk indices, term partitioning has several shortcomings that make it difficult to use the

method in practice:

• Scalability. As the collection becomes bigger, so do the individual postings lists. For

a corpus composed of a billion documents, the postings list for a frequent term, such as

“computer” or “internet”, can easily occupy several hundred megabytes. Processing a

query that contains one or more of these frequent terms will require at least a few seconds,

far more than what most users are accustomed to. In order to solve this problem, large

postings lists need to be cut into smaller chunks and divided among several nodes, with

each node taking care of a small part of the postings list and all of them working in

parallel. Unfortunately, this complicates the query processing logic quite a bit.
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• Load Imbalance. Term partitioning suffers from an uneven load across the index

nodes. The load corresponding to a single term is a function of the term’s frequency in

the collection as well as its frequency in users’ queries. If a term has a long postings

list and is also very popular in search queries, then the corresponding index node may

experience a load that is much higher than the average load in the system. To address

this problem, postings lists that are responsible for a high fraction of the overall load

should be replicated and distributed across multiple nodes. This way, the computational

load associated with a given term can be shared among several machines, albeit at the

cost of increased storage requirements.

• Term-at-a-Time. Perhaps the most severe limitation of the term-partitioned approach

is its inability to support efficient document-at-a-time query processing. In order to

realize document-at-a-time scoring on top of a term-partitioned index, entire postings

lists, as opposed to pruned accumulator sets, would need to be sent across the network.

This is impractical, due to the size of the postings lists. Therefore, ranking methods that

necessitate a document-at-a-time approach, such as the proximity ranking function from

Section 2.2.2, are incompatible with a term-partitioned index.

Even with all these shortcomings, term partitioning can sometimes be the right choice. Recall,

for instance, the three-level cache hierarchy from Section 13.4.1. The second level in this

hierarchy caches list intersections (in search engines with Boolean-AND query semantics; see

Section 2.2). Instead of following a document partitioning approach and equipping each index

node with its own intersection cache, we may choose a term-partitioned index and treat the

cached intersections just like ordinary postings lists. In the example shown in Figure 14.4, if we

have already seen the query 〈t1, t2〉 before, we may have cached the intersected list (t1 ∧ t2) in

index node v(t2) and may skip v(t1) when processing the new query 〈t1, t2, t3〉.

More generally, term partitioning suggests itself if postings lists are relatively short — either

due to the nature of the information they represent (as in the case of list intersections) or

because they are artificially shortened (for instance, by applying index pruning techniques; see

Section 5.1.5 for details).

14.1.3 Hybrid Schemes

Consider a distributed index with n nodes, for a collection of size |C|. Document partitioning

becomes inefficient if |C|/n is too small and disk seeks dominate the overall query processing

cost. Term partitioning, on the other hand, becomes impractical if |C| is too large, as the time

required to process a single query is likely to exceed the users’ patience.

Xi et al. (2002) propose a hybrid architecture in which the collection is divided into p subcol-

lections according to a standard document partitioning scheme. The index for each subcollection

is then term-partitioned across n/p nodes, so that each node in the system is responsible for
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all occurrences of a set of terms within one of the p subcollections. With the right load balanc-

ing policies in place, this can lead roughly to a factor-n increase in throughput and a factor-p

latency reduction.

As an alternative to the hybrid term/document partitioning, we may also consider a hybrid

of document partitioning and replication. Remember that the primary objective of term par-

titioning is to increase throughput, not to decrease latency. Thus, instead of term-partitioning

each of the p subindices, we may achieve the same performance level by simply replicating each

subindex n/p times and load-balancing the queries among n/p identical replicas. At a high

level, this is the index layout that was used by Google around 2003 (Barroso et al., 2003). The

overall impact on maximum throughput and average latency is approximately the same as in

the case of the hybrid document/term partitioning. The storage requirements are likely to be a

bit higher, due to the (n/p)-way replication. If the index is stored on disk, this is usually not a

problem.

14.1.4 Redundancy and Fault Tolerance

When operating a large-scale search engine with thousands of users, reliability and fault toler-

ance tend to be of similar importance as response time and result quality. As we increase the

number of machines in the search engine, so as to scale to higher query loads, it becomes more

and more likely that one of them will fail at some point in time. If the system has been designed

with fault tolerance in mind, then the failure of a single machine may cause a small reduction in

throughput or search quality. If it has not been designed with fault tolerance in mind, a single

failure may bring down the entire search engine.

Let us compare the simple, replication-free document partitioning and term partitioning

schemes for a distributed search engine with 32 nodes. If one of the nodes in the term-partitioned

index fails, the engine will no longer be able to process queries containing any of the terms

managed by that node. Queries that do not contain any of those terms are unaffected. For a

random query q containing three words (the average number of query terms for Web queries),

the probability that q can be processed by the remaining 31 nodes is

(

31

32

)3

≈ 90.9%. (14.3)

If one of the nodes in the document-partitioned index fails, on the other hand, the search engine

will still be able to process all incoming queries. However, it will miss some search results. If

the partitioning was performed bias-free, then the probability that j out of the top k results for

a random query are missing is

(

k

j

)

·

(

1

32

)j

·

(

31

32

)k−j

. (14.4)
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Thus, the probability that the top 10 results are unaffected by the failure is

(

31

32

)10

≈ 72.8%. (14.5)

It therefore might seem that the impact of the machine failure is lower for the term-partitioned

than for the document-partitioned index. However, the comparison is somewhat unfair, because

the inability to process a query is a more serious problem than losing one of the top 10 search

results. If we look at the probability that at least 2 of the top 10 results are lost due to the

missing index node, we obtain

1 −

(

31

32

)10

−

(

10

1

)

·

(

1

32

)

·

(

31

32

)9

≈ 3.7%. (14.6)

Thus, the probability that a query is impacted severely by a single node failure is in fact quite

small, and most users are unlikely to notice the difference. Following this line of argument, we

may say that a document-partitioned index degrades more gracefully than a term-partitioned

one in the case of a single node failure.

For informational queries, where there are often multiple relevant results, this behavior

might be good enough. For navigational queries, however, this is clearly not the case (see

Section 15.2 for the difference between informational and navigational queries). As an exam-

ple, consider the navigational query 〈“white”, “house”, “website”〉. This query has a single vital

result (http://www.whitehouse.gov/) that must be present in the top search results. If 1 of the

32 nodes in the document-partitioned index fails, then for each navigational query there is a

3.2% chance that the query’s vital result is lost (if there is a vital result for the query). There

are many ways to address this problem. Three popular ones are the following:

• Replication. We can maintain multiple copies of the same index node, as described in

the previous section on hybrid partitioning schemes, and have them process queries in

parallel. If one of the r replicas for a given index node fails, the remaining r− 1 will take

over the load of the missing replica. The advantage of this approach is its simplicity (and

its ability to improve throughput and fault tolerance at the same time). Its disadvantage

is that, if the system is operating near its theoretical throughput and r is small, the

remaining r − 1 replicas may become overloaded.

• Partial Replication. Instead of replicating the entire index r times, we may choose

to replicate index information only for important documents. The rationale behind this

strategy is that most search results aren’t vital and can easily be replaced by an equally

relevant document. The downside of this approach is that it can be difficult to predict

which documents may be targeted by navigational queries. Query-independent signals

such as PageRank (Section 15.3.1) can provide some guidance.
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• Dormant Replication. Suppose the search engine comprises a total of n nodes. We can

divide the index found on each node vi into n− 1 fragments and distribute them evenly

among the n−1 remaining nodes, but leave them dormant (on disk) and not use them for

query processing. Only when vi fails will the corresponding n− 1 fragments be activated

inside the remaining nodes and loaded into memory for query processing. It is important

that the fragments are loaded into memory, for otherwise we will double the overall

number of disk seeks per query. Dormant replication roughly causes a factor-2 storage

overhead, because each of the n nodes has to store n − 1 additional index fragments.

It is possible to combine the above strategies — for example, by employing dormant replication

of partial indices. Instead of replicating the whole index found in a given node, we replicate

only the part that corresponds to important documents. This reduces the storage overhead and

limits the impact on the search engine’s throughput in case of a node failure.

14.2 MapReduce

Apart from processing search queries, there are many other data-intensive tasks that need to be

carried out by a large-scale search engine. Such tasks include building and updating the index;

identifying duplicate documents in the corpus; and analyzing the link structure of the document

collection (e.g., PageRank; see Section 15.3.1).

MapReduce is a framework developed at Google that is designed for massively parallel compu-

tations (thousands of machines) on very large amounts of data (many terabytes), and that can

accomplish all of the tasks listed above. MapReduce was first presented by Dean and Ghemawat

(2004). In addition to a high-level overview of the framework, their paper includes information

about many interesting implementation details and performance optimizations.

14.2.1 The Basic Framework

MapReduce was inspired by the map and reduce functions found in functional programming

languages, such as Lisp. The map function takes as its arguments a function f and a list of

elements l = 〈l1, l2, . . . , ln〉. It returns a new list

map(f, l) = 〈 f(l1), f(l2), . . . , f(ln) 〉. (14.7)

The reduce function (also known as fold or accumulate) takes a function g and a list of elements

l = 〈l1, l2, . . . , ln〉. It returns a new element l′, such that

l′ = reduce(g, l) = g(l1, g(l2, g(l3, . . .))). (14.8)

When people refer to the map function in the context of MapReduce, they usually mean the

function f that gets passed to map (where map itself is provided by the framework). Similarly,
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map (k, v) ≡
1 split v into tokens
2 for each token t do

3 output(t, 1)
4 return

reduce (k, 〈v1, v2, . . . , vn〉) ≡
5 count← 0
6 for i ← 1 to n do

7 count← count + vi

8 output(count)
9 return

Figure 14.5 A MapReduce that counts the number of occurrences of each term in a given corpus of
text. The input values processed by the map function are documents or other pieces of text. The input
keys are ignored. The outcome of the MapReduce is a sequence of (t, ft) tuples, where t is a term, and
ft is the number of times t appeared in the input.

when they refer to the reduce function, they mean the function g that gets passed to reduce.

We will follow this convention.

From a high-level point of view, a MapReduce program (often simply called “a MapReduce”)

reads a sequence of key/value pairs, performs some computations on them, and outputs another

sequence of key/value pairs. Keys and values are often strings, but may in fact be any data

type. A MapReduce consists of three distinct phases:

• In the map phase, key/value pairs are read from the input and the map function is

applied to each of them individually. The function is of the general form

map : (k, v) 7→ 〈 (k1, v1), (k2, v2), . . . 〉. (14.9)

That is, for each key/value pair, map outputs a sequence of key/value pairs. This

sequence may or may not be empty, and the output keys may or may not be identical to

the input key (they usually aren’t).

• In the shuffle phase, the pairs produced during the map phase are sorted by their key,

and all values for the same key are grouped together.

• In the reduce phase, the reduce function is applied to each key and its values. The function

is of the form

reduce : (k, 〈v1, v2, . . .〉) 7→ (k, 〈v′1, v
′

2, . . .〉). (14.10)

That is, for each key the reduce function processes the list of associated values and

outputs another list of values. The output values may or may not be the same as the

input values. The output key usually has to be the same as the input key, although this

depends on the implementation.

Figure 14.5 shows the map and reduce functions of a MapReduce that counts the number of

occurrences of all terms in a given corpus of text. In the reduce function, the output key is

omitted, as it is implicit from the input key.
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MapReduces are highly parallelizable, because both map and reduce can be executed in

parallel on many different machines. Suppose we have a total of n = m + r machines, where

m is the number of map workers and r is the number of reduce workers. The input of the

MapReduce is broken into small pieces called map shards. Each shard typically holds between

16 and 64 MB of data. The shards are treated independently, and each shard is assigned to one

of the m map workers. In a large MapReduce, it is common to have dozens or hundreds of map

shards assigned to each map worker. A worker usually works on only 1 shard at a time, so all

its shards have to be processed sequentially. However, if a worker has more than 1 CPU, it may

improve performance to have it work on multiple shards in parallel.

In a similar fashion, the output is broken into separate reduce shards, where the number

of reduce shards is often the same as r, the number of reduce workers. Each key/value pair

generated by the map function is sent to one of the r reduce shards. Typically, the shard that

a given key/value pair is sent to depends only on the key. For instance, if we have r reduce

shards, the target shard for each pair could be chosen according to

shard(key, value) = hash(key) mod r, (14.11)

where hash is an arbitrary hash function. Assigning the map output to different reduce shards in

this manner guarantees that all values for the same key end up in the same reduce shard. Within

each reduce shard, incoming key/value pairs are sorted by their key (this is the shuffle phase),

and are eventually fed into the reduce function to produce the final output of the MapReduce.

Figure 14.6 shows the data flow for the MapReduce from Figure 14.5, for three small text

fragments from the Shakespeare corpus. Each fragment represents a separate map shard.

The key/value pairs emitted by the map workers are partitioned onto the three reduce

shards based on the hash of the respective key. For the purpose of the example, we assume

hash(“heart”) mod 3 = 0, hash(“soul”) mod 3 = 1, and so forth.

The map phase may overlap with the shuffle phase, and the shuffle phase may overlap with the

reduce phase. However, the map phase may never overlap with the reduce phase. The reason for

this is that the reduce function can only be called after all values for a given key are available.

Since, in general, it is impossible to predict what keys the map workers will emit, the reduce

phase cannot commence before the map phase is finished.

14.2.2 Combiners

In many MapReduce jobs, a single map shard may produce a large number of key/value pairs for

the same key. For instance, if we apply the counting MapReduce from Figure 14.5 to a typical

corpus of English text, 6–7% of the map outputs will be for the key “the”. Forwarding all these

tuples to the reduce worker responsible for the term “the” wastes network and storage resources.

More important, however, it creates an unhealthy imbalance in the overall load distribution.

Regardless of how many reduce workers we assign to the job, one of them will end up doing at

least 7% of the overall reduce work.
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Figure 14.6 Data flow for the MapReduce definition shown in Figure 14.5, using 3 map shards and
3 reduce shards.
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To overcome this problem, we could modify the map workers so that they accumulate per-

shard term counts in a local hash table and output one pair of the form (t, ft) instead of ft

pairs of the form (t, 1) when they are finished with the current shard. This approach has the

disadvantage that it requires extra implementation effort by the programmer.

As an alternative to the hash table method, it is possible to perform a local shuffle/reduce

phase for each map shard before forwarding any data to the reduce workers. This approach has

about the same performance effect as accumulating local counts in a hash table, but is often

preferred by developers because it does not require any changes to their implementation. A

reduce function that is applied to a map shard instead of a reduce shard is called a combiner.

Every reduce function can serve as a combiner as long as its input values are of the same type

as its output values, so that it can be applied to its own output. In the case of the counting

MapReduce, this requirement is met, as all input and output values in the reduce phase are

integers.

14.2.3 Secondary Keys

The basic MapReduce framework, as described so far, does not make any guarantees regarding

the relative order in which values for the same key are fed into the reduce function. Often this

is not a problem, because the reduce function can inspect and reorder the values in any way it

wishes. However, for certain tasks the number of values for a given key may be so large that

they cannot all be loaded into memory at the same time, thus making reordering inside the

reduce function difficult. In that situation it helps to have the MapReduce framework sort each

key’s values in a certain way before they are passed to the reduce function.

An example of a task in which it is imperative that values arrive at the reduce function

in a certain, predefined order is index construction. To create a docid index for a given text

collection, we might define a map function that, for each term t encountered in a document

d, outputs the key/value pair (t, docid(d)). The reduce function then builds t’s postings list

by concatenating all its postings (and potentially compressing them). Obviously, for this to be

possible, the reduce input has to arrive in increasing order of docid(d).

MapReduce supports the concept of secondary keys that can be used to define the order in

which values for the same key arrive at the reduce function. In the shuffle phase, key/value pairs

are sorted by their key, as usual. However, if there is more than one value for a given key, the

key’s values are sorted according to their secondary key. In the index construction MapReduce,

the secondary key of a key/value pair would be the same as the pair’s value (i.e., the docid of

the document that contains the given term).

14.2.4 Machine Failures

When running a MapReduce that spans across hundreds or thousands of computers, some of

the machines occasionally experience problems and have to be shut down. The MapReduce

framework assumes that the map function behaves strictly deterministically, and that the map
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output for a given map shard depends only on that one shard (i.e., no information may be

exchanged between two shards processed by the same map worker). If this assumption holds,

then a map worker failure can be dealt with by assigning its shards to a different machine and

reprocessing them.

Dealing with a reduce worker failure is slightly more complicated. Because the data in each

reduce shard may depend on data in every map shard, assigning the reduce shard to a different

worker may necessitate the re-execution of all map shards. In order to avoid this, the output of

the map phase is usually not sent directly to the reduce workers but is temporarily stored in a

reliable storage layer, such as a dedicated storage server or the Google file system (Ghemawat

et al., 2003), from where it can be read by the new reduce worker in case of a worker failure.

However, even if the map output is stored in a reliable fashion, a reduce worker failure will still

require the re-execution of the shuffle phase for the failed shard. If we want to avoid this, too,

then the reduce worker needs to send the output of the shuffle phase back to the storage server

before it enters the reduce phase. Because, for a given shard, the shuffle phase and the reduce

phase take place on the same machine, the additional network traffic is usually not worth the

time savings unless machine failures occur frequently.

14.3 Further Reading

Compared with other topics covered by this book, the literature on parallel information retrieval

is quite sparse. Existing publications are mostly limited to small or mid-size compute clusters

comprising not more than a few dozen machines (the exception being occasional publications

by some of the major search engine companies). In some cases it may therefore be difficult to

assess the scalability of a proposed architecture. For instance, although the basic version of term

partitioning discussed in Section 14.1.2 might work well on an 8-node cluster, it is quite obvious

that it does not scale to a cluster containing hundreds or thousands of nodes. Despite this

caveat, however, some of the results obtained in small-scale experiments may still be applicable

to large-scale parallel search engines.

Load balancing issues for term-partitioned query evaluation are investigated by Moffat et al.

(2006). Their study shows that, with the right load balancing policies in place, term partitioning

can lead to almost the same query performance as document partitioning. Maŕın and Gil-Costa

(2007) conduct a similar study and come to the conclusion that a term-partitioned index can

sometimes outperform a document-partitioned one. Abusukhon et al. (2008) examine a variant

of term partitioning in which terms with long postings lists are distributed across multiple index

nodes.

Puppin et al. (2006) discuss a document partitioning scheme in which documents are not

assigned to nodes at random but based on the queries for which they are ranked highly (according

to an existing query log). Documents that rank highly for the same set of queries tend to be

assigned to the same node. Each incoming query is forwarded only to those index nodes that
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are likely to return good results for the query. Xi et al. (2002) and Maŕın and Gil-Costa (2007)

report on experiments conducted with hybrid partitioning schemes, combining term partitioning

and document partitioning. A slightly different view of parallel query processing is presented

by Maŕın and Navarro (2003), who discuss distributed query processing based on suffix arrays

instead of inverted files.

Barroso et al. (2003) provide an overview of distributed query processing at Google. Other

instruments for large-scale data processing at Google are described by Ghemawat et al. (2003),

Dean and Ghemawat (2004, 2008), and Chang et al. (2008).

Hadoop3 is an open-source framework for parallel computations that was inspired by Google’s

MapReduce and GFS technologies. Among other components, Hadoop includes HDFS (a dis-

tributed file system) and a MapReduce implementation. The Hadoop project was started by

Doug Cutting, who also created the Lucene search engine. Yahoo is one of the main contributors

to the project and is believed to be running the world’s largest Hadoop installation, comprising

several thousand machines.

Recently the use of graphics processing units (GPUs) for general-purpose, non-graphics-

related computations has received some attention. Due to their highly parallel nature, GPUs can

easily beat ordinary CPUs in applications in which long sequences of data have to be processed

sequentially or cosequentially, such as sorting (Govindaraju et al., 2006; Sintorn and Assarsson,

2008) and disjunctive (i.e., Boolean-OR) query processing (Ding et al., 2009).

14.4 Exercises

Exercise 14.1 When replicating a distributed search engine, the replication may take place

either at the node level (i.e., a single cluster with 2n index nodes, where two nodes share the

query load for a given index shard), or at the cluster level (i.e., two identical clusters, but no

replication within each cluster). Discuss the advantages and disadvantages of each approach.

Exercise 14.2 Describe possible scalability issues that may arise in the context of document-

partitioned indices even if the index is held in main memory. (Hint: Consider query processing

operations whose complexity is sublinear in the size of the index.)

Exercise 14.3 Given a document-partitioned index with n = 200 nodes and a target result

set size of m = 50, what is the minimum per-node result set size k required to obtain the correct

top m results with probability 99%?

Exercise 14.4 Generalize the dormant replication strategy from Section 14.1.4 so that it can

deal with k simultaneous machine failures. How does this affect the overall storage requirements?

3 hadoop.apache.org
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Exercise 14.5 Describe how dormant replication for a term-partitioned index differs from

dormant replication for a document-partitioned index.

Exercise 14.6 (a) Design a MapReduce (i.e., a map function and a reduce function) that

computes the average document length (number of tokens per document) in a given corpus of

text. (b) Revise your reduce function so that it can be used as a combiner.

Exercise 14.7 Design a MapReduce that computes the conditional probability Pr[t1|t2] of

seeing the term t1 in a document that contains the term t2. You may find it useful to have your

map function emit secondary keys to enforce a certain ordering among all values for a given key.

Exercise 14.8 (project exercise) Simulate a document-partitioned search engine using the

BM25 ranking function you implemented for Exercise 5.9. Build an index for 100%, 50%, 25%,

and 12.5% of the GOV2 collection. For each index size, measure the average time per query

(for some standard query set). What do you observe? How does this affect the scalability of

document partitioning?
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